Linear Algebra Examples

Find the Determinant [[x,4,x^2],[6,-x,0],[-1,x^3,1]]
Step 1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Tap for more steps...
Step 1.1
Consider the corresponding sign chart.
Step 1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 1.3
The minor for is the determinant with row and column deleted.
Step 1.4
Multiply element by its cofactor.
Step 1.5
The minor for is the determinant with row and column deleted.
Step 1.6
Multiply element by its cofactor.
Step 1.7
The minor for is the determinant with row and column deleted.
Step 1.8
Multiply element by its cofactor.
Step 1.9
Add the terms together.
Step 2
Evaluate .
Tap for more steps...
Step 2.1
The determinant of a matrix can be found using the formula .
Step 2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Multiply by .
Step 2.2.1.2
Multiply .
Tap for more steps...
Step 2.2.1.2.1
Multiply by .
Step 2.2.1.2.2
Multiply by .
Step 2.2.2
Add and .
Step 3
Evaluate .
Tap for more steps...
Step 3.1
The determinant of a matrix can be found using the formula .
Step 3.2
Simplify the determinant.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Multiply by .
Step 3.2.1.2
Multiply .
Tap for more steps...
Step 3.2.1.2.1
Multiply by .
Step 3.2.1.2.2
Multiply by .
Step 3.2.2
Add and .
Step 4
Evaluate .
Tap for more steps...
Step 4.1
The determinant of a matrix can be found using the formula .
Step 4.2
Multiply .
Tap for more steps...
Step 4.2.1
Multiply by .
Step 4.2.2
Multiply by .
Step 5
Simplify each term.
Tap for more steps...
Step 5.1
Rewrite using the commutative property of multiplication.
Step 5.2
Multiply by by adding the exponents.
Tap for more steps...
Step 5.2.1
Move .
Step 5.2.2
Multiply by .
Step 5.3
Multiply by .
Step 5.4
Apply the distributive property.
Step 5.5
Rewrite using the commutative property of multiplication.
Step 5.6
Rewrite using the commutative property of multiplication.
Step 5.7
Simplify each term.
Tap for more steps...
Step 5.7.1
Multiply by by adding the exponents.
Tap for more steps...
Step 5.7.1.1
Move .
Step 5.7.1.2
Use the power rule to combine exponents.
Step 5.7.1.3
Add and .
Step 5.7.2
Multiply by by adding the exponents.
Tap for more steps...
Step 5.7.2.1
Move .
Step 5.7.2.2
Multiply by .
Tap for more steps...
Step 5.7.2.2.1
Raise to the power of .
Step 5.7.2.2.2
Use the power rule to combine exponents.
Step 5.7.2.3
Add and .